1. Synthetic polyamides, such as nylon, contain the same link as polypeptides. Nylon is the general name for a family of polyamides.

A short section of a nylon polymer is shown below.

Draw the structures of two monomers that could be used to make this nylon.
[Total 2 marks]
2. Short sections of the molecular structures of two polymers are shown below.

polymer C

polymer D
(a) (i) Circle, on the diagrams above, the simplest repeat unit in each polymer.
(ii) In the boxes below, draw the displayed formulae of the two monomers that could be used to prepare polymer \mathbf{D}.

(b) Chemists have developed degradable polymers to reduce the quantity of plastic waste being disposed of in landfill sites. Polymer \mathbf{D} is more likely to be a 'degradable polymer' than polymer C.

Suggest two reasons why.
\qquad
\qquad
\qquad
\qquad
3. Nylon is sometimes used for electrical insulation. However, if there is a risk of high temperatures then a polymer such as Nomex ${ }^{\circledR}$, with a higher melting point, is used.

The repeat unit of Nomex ${ }^{\circledR}$ is shown below.

(i) Draw the structures of two monomers that could be used to form Nomex ${ }^{\circledR}$.
(ii) Suggest a reason why the melting point of $N o m e x^{\circledR}$ is higher than that of nylon.
\qquad
\qquad
\qquad
4. The fibres used in carpets are made from synthetic or natural polymers such as nylon-6,6, Orlon ${ }^{\text {TM }}$ and wool.
(a) Complete the table below.

	nylo-6,6	Orlon ${ }^{\text {TM }}$
monomer(s)	$\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}_{2}$	
repeat unit of the polymer		
type of polymerisation		

(b) Nylon-6,6 can be made from its monomers in the laboratory in two stages as shown below.

(i) State a suitable reagent to carry out stage 1.
\qquad
(ii) Deduce the inorganic product that is also formed in stage 2.
\qquad
(c) Industrially, nylon-6,6 is not manufactured by the method in (b). Instead, the two monomers are mixed directly at room temperature to give a salt. This salt is then heated to convert it to nylon-6.6.

Suggest the structures of the two ions present in this salt.
(d) Wool is a protein. It is a natural polymer made by the same type of polymerisation as nylon-6,6.

A section of the polymer chain in a protein is shown below.

(i) How many monomer units does this section contain?
\qquad
(ii) Draw the structure of one of the monomer molecules that was used to form this section.
(iii) State three ways in which the monomer units of a protein differ from those of nylon-6,6.
\qquad
\qquad
\qquad
\qquad
\qquad
5. Poly(phenylethene) is one of the most versatile and successful polymers.

The 3-D skeletal formula of a section of atactic poly(phenylethene) is shown in the diagram below.

(i) State the type of polymerisation used to make poly(phenylethene).
(ii) Draw a skeletal or displayed formula to show the monomer used to make poly(phenylethene).
(iii) Outline how the polymer is formed from the monomer molecules. (You do not need to give any details of the catalyst or conditions involved.)
\qquad
\qquad
\qquad
\qquad
\qquad

